Bayesian forecast combination for VAR models∗

نویسندگان

  • Michael K Andersson
  • Sune Karlsson
چکیده

This paper proposes a Bayesian procedure for combining forecasts from multivariate forecasting models, e.g. VAR models. Standard applications of Bayesian model averaging suffer from a basic difficulty in this context, when additional variables are included and modelled the connection between the overall measure of fit for the model and the expected forecasting performance for the variables of interest is lost. We circumvent this problem by focusing on the predictive performance for the variables of interest and base the forecast combination on the predictive likelihood. Specifically we consider forecast combination and, indirectly, model selection for VAR models when there is uncertainty about which variables to include in the model in addition to the forecast variables. For this purpose we consider all possible combinations of variables and lag lengths and the models that arise from these. The procedure is evaluated in a small simulation study and found to perform competitively in applications to real world data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

Forecast Evaluation for Multivariate Time-Series Models: The U.S. Cattle Market

A set of rigorous diagnostic techniques is used to evaluate the forecasting performance of five multivariate time-series models for the U.S. cattle sector. The root-meansquared-error criterion along with an evaluation of the rankings of forecast errors reveals that the Bayesian vector autoregression (BVAR) and the unrestricted VAR (UVAR) models generate forecasts which are superior to both a re...

متن کامل

Marginalized Predictive Likelihood Comparisons of Linear Gaussian State-Space Models with Applications to DSGE, DSGE-VAR, and VAR Models

The predictive likelihood is useful for ranking models in forecast comparison exercises using Bayesian inference. We discuss how it can be estimated, by means of marginalization, for any subset of the observables in linear Gaussian state-space models. We compare macroeconomic density forecasts for the euro area of a DSGE model to those of a DSGE-VAR, a BVAR, and a multivariate random walk over ...

متن کامل

Forecasting with time-varying vector autoregressive models

The purpose of this paper is to propose a time-varying vector autoregressive model (TV-VAR) for forecasting multivariate time series. The model is casted into a state-space form that allows flexible description and analysis. The volatility covariance matrix of the time series is modelled via inverted Wishart and singular multivariate beta distributions allowing a fully conjugate Bayesian infere...

متن کامل

Forecasting Exchange Rates with a Large Bayesian VAR

Models based on economic theory have serious problems at forecasting exchange rates better than simple univariate driftless random walk models, especially at short horizons. Multivariate time series models suffer from the same problem. In this paper, we propose to forecast exchange rates with a large Bayesian VAR (BVAR), using a panel of 33 exchange rates vis-a-vis the US Dollar. Since exchange...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007